Leading Thermocouple Assembly Manufacturers

Thermocouple assemblies, also called thermocouples, temperature sensors or temperature probes, are instruments that both sense heat and control temperature. Consisting of two connected, dissimilar metal wires, their operation is based on the Seebeck Effect, which theorizes that a voltage is always created between two dissimilar metals, and that said voltage changes in proportion to exterior temperature changes. Read More…

Thermocouple Assemblies Thermocouple assemblies, also called thermocouples, temperature sensors or temperature probes, are instruments that both sense heat and control temperature.

In business since 1972, Thermo Sensors Corporation is a leading thermocouple manufacturer of an array of many products and services.

Thermo Sensors Corporation $$$

We manufacture a full line of Thermocouples to fit your application. Temperatures from cryogenic to 4000F, and sizes ranging from needle thin to several thousand pound multipoint temperature sensors.

Thermocouple Technology, LLC $$$

Kelvin Technologies is a high-quality thermocouple manufacturer, representative, and distributor for all of your electrical heating, temperature controlling, and temperature sensing requirements. Our products are engineered and manufactured in-house to address specific requirements, such as higher temperatures and more compact profiles. With over 100 years of combined experience, all of us at...

Kelvin Technologies, Inc. $$$

Temperature Specialists, Incorporated is a manufacturer of quality thermocouples. Temperature Specialists provide solutions for your sensing needs by building to meet your specifications. Feel free to visit their comprehensive and helpful website for full descriptions of their state-of-the-art line of quality products and services or call their experts with any questions.

Temperature Specialists, Inc. $$$

Since 1971, Thermalogic has been a leading manufacturer of electronic temperature and humidity control and sensors. Here at Thermalogic we work with our clients in a partnership to build a lasting business relationship. All of our products have quick turnaround times, including custom designs, and are thoroughly tested prior to being sent out. At Thermalogic we pride ourselves on our high...

Thermalogic® Corporation $$$

We have over 81 years of successful manufacturing experience and we offer a wide range of solutions. Our thermostats are utilized in industries including HVAC, process heating, food service, laboratory tank heating, industrial system control, and more. We have made it our mission to remain on the forefront of our industry and we work closely with our customers to ensure maximum satisfaction.

Ulanet™ $$$
Get Your Company Listed
placeholder image

Thermocouple Applications

Thermocouple assemblies are used for industrial, residential and commercial purposes alike. Systems and devices that use them include: water tanks, plastic extrusion machines, heat exchangers, general heating equipment, parts washers, kilns, ovens, water heaters, furnaces, pressure chambers and thermostats.

The History of Thermocouple Assemblies

Thermocouples were invented in 1821 by Thomas Seebeck after he discovered what would come to called the “Seebeck effect.” In short, he discovered that when you put two different metal types together at both ends and apply heat where they meet, a small electric current will flow through the circuit.

Other well-known scientists, such as Michael Faraday and Georg Ohm, conducted experiments using the Seebeck effect. These experiments, conducted in the 1820s, helped further physicists’ understanding of it. In 1826, A.C. Becquerel published a study in Paris, suggesting that scientists used Seebeck’s effect to measure high temperature. This was the first recorded suggestion of this kind.

Then, in the 1830s, Italian physicist Leopoldo Nobili, together with his colleague Macedonio Melloni, created a thermoelectric battery. They called this battery a thermo-multiplication battery, or thermo-multiplier for short. The invention of this battery eventually leads to the development of the modern thermocouple. Because of this, Nobili is referred to by some people as the father of the thermocouple.

Other experts, though, say that Henry Le Chatelier, not Nobili, is the father of the thermocouple. In the late 1800s, he built the first rhodium-platinum and platinum wire thermocouple. Around the same time, American chemists and engineers with thermocoupling. One such American, Dr. Carl Barus, who, among other revelations, established the linear relation between couples. His work focused on temperature measurement for the United States Geological Survey.

After much research, manufacturers began making thermocouples in the early 1900s. Over time, with the advancement of technology, they’ve only become more relevant to our world. Modern thermocouple assemblies are exceptionally precise and versatile.

Thermocouple Design

Production Process
Thermocouple construction is quite simple; manufacturers make thermocouple assemblies from a pair of wires. In addition, manufacturers usually cover thermocouple assemblies are in a protective layer insulative tubing called a sheath.

To complement this, they make thermocouples with one of three junction types: grounded, ungrounded or exposed. For the fastest response and reading time, they assign thermocouples with exposed junctions. An exposed junction protrudes beyond the sheath so that it is directly exposed to the environment around it. However, this method is only viable in non-pressurized and non-corrosive environments.

Considerations
Thermocouple manufacturers decide what combination of metals and calibrations to give to a thermocouple assembly based on an application’s required temperature range and its intended environment. Using these considerations, they can also create custom thermocouple assemblies that feature different wire diameters, materials and more.

For instance, thermocouple wires with very thin walls have a narrower temperature range capacity than those with thicker wires. So, if an application calls for a broader temperature range, its thermocouple must have thicker wire walls. For a surface application, manufacturers can use flat wires. In addition, different metal materials respond differently to environmental factors like mechanical vibrations, abrasions or chemical exposure; these factors must be taken into account when fashioning a thermocouple. In addition, if a thermocouple is being installed into a pre-existing system, manufacturers must design it for compatibility.

Features of Thermocouples

A basic thermocouple consists of two metals connected at their bases and connected again at their tips with a bead.

Usually, multiple thermocouples work together to gather information that will commute a larger measurement. Often, this information is connected to automated computer technology that quickly and accurately converts into digital form for further analysis. Similarly, many thermocouples are accompanied by thermocouple wires or thermowells, which are accessories that remove them from the damaging influence of heat, while extending their reach.

Thermocouples are temperature sensors composed of two metals joined at one end. The joined end is referred to as the measurement junction, whereas the unjointed end is called the reference junction. The measurement junction, as the name implies, is the point where the temperature must be measured, while the reference junction must be kept constant. The Seebeck Effect serves as the basis for all thermocouples. This phenomenon occurs when an electromotive force (EMF), (the EMF being the summation of Thomson and Peltier EMFs at the unjointed end), is produced while there is a temperature difference between the two junctions of dissimilar metals. The EMF, in terms of millivolts, produced can then be measured to determine the temperature of interest.

The voltage generated affects the reference junction temperature. Consequently, this has to be counteracted with cold junction compensation to keep the reference junction temperature constant and increase the accuracy of temperature readings. 

Various metal combinations generate different voltages. The temperature range of the application and the environment where the thermocouple will be exposed are the primary considerations for choosing the type of metals to be used.

Types of Thermocouples

All thermocouple assemblies can be divided into groups of noble metal thermocouples and base metal thermocouples, each having distinct characteristics suitable for specific applications. Some applications of thermocouples are as follows.

Noble metal thermocouples are those thermocouples made from noble, or precious, metals, which are metals with high resistance to corrosion from chemicals and organic acids. Also, noble metal thermocouples all measure up to 2000°C. Noble metal thermocouples include types: K, N, R and S.

Base metal thermocouples may be composed of any metal except a noble metal. Base metal thermocouples include types: T and J.

In addition to these thermocouple groupings, there are many others, defined in various ways, such as by sensitivity levels. Type B thermocouples, for example, are known for their low sensitivity.

Type K Thermocouple
The most universal thermocouple type is the Type K thermocouple, which consists of two alloy wires, alumel (aluminum and nickel) and chromel (chromium and nickel). Type K’s have a high temperature resistance to be used with everyday devices.

Type N Thermocouple
Type N thermocouples are made up of Nicrosil (a nickel alloy with 14.4% chromium) and Nisil (an alloy that is 95.5% nickel and 4.4% silicon, with trace amounts of magnesium). Stable and oxidation resistant, it works best at temperatures between −270°C and 1300°C. They are designed to overcome the following sources of thermoelectric instability: gradual/cumulative thermal EMF drift, short-term cyclic changes in thermal EMF on heating (in temperatures between approx. 250°C and 650°C), and time-independent perturbation in thermal EMF.

Type R Thermocouple
Type R thermocouples are formed with paired 13% rhodium and platinum. They work in temperature environments ranging from 0°C to 1428°C.

Type S Thermocouple
Type S thermocouples are made from a pairing of platinum and 10% rhodium. They are known for their high accuracy, high stability and ability to work well in high temperature applications. Most often, they’re used in pharmaceutical and biotech applications, though they can also be used with low and mid-level temperature applications.

Type T Thermocouple
Type T thermocouples are base metal thermocouples that are usually made from a combination of copper and constantan. They can measure temperatures under 1000°C and are therefore common for use in cryogenics or ultra-low temperature freezers. Commonly, they’re composed of tin, nickel, copper, aluminum or lead. They measure

Type J Thermocouple
These base metal thermocouples are usually made from a pairing of iron and constantan. They may also feature stainless steel, a durable iron alloy. Like Type T thermocouples, they are best for use with low temperature applications. They can also, however, be used for brief high temperature applications.

Type C Thermocouple
Type C refractory metal thermocouples are named after refractory metals, which are coated in material with a high melting pointing. Handling temperatures above 2600°C, they have the highest heat resistance.

Type E Thermocouple
Type E thermocouples are composed from paired Nickel-Constantan and Nickel-Chromium. It is used with applications that require extra high accuracy.

Alternatives to thermocouples include thermistors and resistance temperature detectors (RTDs). Both of these devices use the electrical resistance of certain metals to measure temperature change.

Thermistor
Thermistors are made from metal oxides, which have an inverse resistance to rising temperature; as temperatures increase, thermistor resistance falls. For this reason, thermistors fall into the category of “negative temperature coefficient” (NTC) sensors. As they only accurately measure environments up to 200℃, thermistors are only appropriate for low to mid-temperature applications.

RTD Sensor
For higher temperatures, RTDs are a much better choice; they accurately (within +0.5%) measure temperatures between -200℃ and 800℃. While RTDs tend to have produce tighter accuracies than thermocouple assemblies, thermocouples have a much higher heat capacity and are much less expensive to make and use. Thermocouple and RTD assemblies are both valuable, but thermocouples are the most popular temperature measurement system because they are simply constructed, easily installed and inexpensive. In addition, they boast short response times, good readability, wide temperature ranges and more application options than thermistors and RTDs.

Advantages of Thermocouple Assemblies

Advantages of thermocouple assemblies include: extremely wide range of temperature measurement, precision readings, ease of use, fast response time, simple design, low cost, ease of installation and intelligent probe design.

Thermocouple Accessories

Common thermocouple accessories include: thermocouple wires, temperature transmitters, thermocouple wires, thermocouple connectors, thermowells and isothermal blocks.

Thermocouple wires, also known as extension wires, and thermowells are used to 1) isolate the thermocouple device from potentially harmful heat sources and 2) extend the thermocouple’s reach. Temperature transmitters discharge signals to remote sensing instruments via copper wires. They increase thermocouple assembly efficiency. Thermocouple connectors are alternatives to conventional terminations; they are fast and efficient. Finally, isothermal blocks are covers placed inside enclosures to make sure that junctions with different temperatures stay separate and maintain their respective temperatures.

Proper Care for Thermocouple Assemblies

In order to keep your thermocouple assemblies up and running, you need to regularly check your system for contamination in the form of: corrosion, oxidation, pollutants or other foreign bodies. If you do not remove pollutants, they can easily cause your system to give you inaccurate readings. Some pollutants can even react with your assembly wires are cause them to corrode or otherwise change.

You also need to watch out for something called the “Green Rotting Effect.” This is an event that takes place if and when a Type K assembly is pushed too far and generates thermoelectric voltage. The voltage causes the assembly to become extremely overheated. Eventually, with enough heat, the chromium section oxidizes and changes its form. Finally, the thermocouple bonding is destroyed completely and the wire becomes covered in a layer of green. Avoid the Green Rotting Effect by closely monitoring your system and making sure your thermocouples are never heated beyond the temperatures for which they are designed.

Standards

It’s extremely important that your thermocouple assembly be made from original metals. Original metal wires are also known as thermocouple wire. Make sure your manufacturer uses certified original metals. If they do not, the accuracy and stability of your assembly will be put in jeopardy.

Industries that Use Thermocouples

Food and Beverage

Thermocouples are widely used in food and beverage manufacturing facilities to provide accurate and precise temperature readings necessary in heating, cooling, frying, or cooking processes. They can be found in ovens, warmers, fryers, toasters, grills, freezers, and more. It should be noted that these industries require a high level of cleanliness and a sanitary design for temperature sensors must be used.

Power Generation

Type J, K, and N thermocouples are commonly used in power plants due to their wide temperature range and ability to perform in extreme environments. Thermocouples are needed in power plants for accurate monitoring and control of the flow of energy.

Automotive and Aerospace

Thermocouples play an important role in managing vehicle diagnostics, improving engine performance, and increasing vehicle safety. Temperature readings by engine thermocouples and other sensors are essential to monitoring exhaust gas readings, cylinder heads, spark plugs, and car batteries.

Metal Processing

Factories producing aluminum, iron, steel, and other metals use thermocouples to track temperature during production. Metal processing plants use very high temperatures to melt metals. Types K, N, R, S, and B are the thermocouple types capable of withstanding these extreme conditions.

Thermocouples are simple, inexpensive sensors with a wide temperature range. They are self-powered and do not need external excitation to function. Many applications utilize them because of their reproducibility, rugged construction, accuracy, and high speed of response.

Things to Consider Regarding Thermocouples

When you’re looking for a thermocouple assembly, you need a high-quality manufacturer. While working with a subpar supplier may save you money in the short run, it will almost certain cost you more in the long run. Avoid the pitfalls associated with a bad manufacturer by checking out the thermocouple assembly manufacturers we have listed on this site. Those we have listed are proven industry leaders with excellent track records. When you’re ready, take some time and check out their profiles, which we have sandwiched in between this information. As you browse, keep in mind your specifications. Think about which manufacturers may best be able to fulfill your request, then pick out three or four from whom you’d like to get a quote. Talk to each of them, comparing and contrasting their services, prices, lead times and delivery services. Choose the one in whom you feel most confident, and get started.

Check out our Load Cells website
Check out our Clean Rooms website

Thermocouple Assemblies Informational Video

 

Thermocouples Power Pages

RTD Sensors

RTD Sensors

An RTD, resistance temperature detector, is a passive temperature sensing device that operates on the principle that the resistance of a metal changes as the temperature changes. The electrical current that passes through the element...

Temperature Sensors

Temperature Sensors

Temperature sensors are devices that detect and measure coolness and hotness and convert it into an electrical signal. Temperature sensors are utilized in our daily lives, be it in the form of domestic water heaters...

Thermistors

Thermistors

A thermistor, a shortened version of the term thermal resistor, is a passive component whose resistance changes as the temperature in a system changes. Thus they serve as an inexpensive, accurate, and dynamic method for measuring temperature...

Thermocouples

Thermocouples

A thermocouple is a transducer that converts thermal energy into electrical energy and is constructed by joining wires made from dissimilar metals to form a junction. Voltage is produced when the temperature at the junction changes...

Thermowells

Thermowells

A thermowell is a pressure-tight vessel that safeguards and increases the lifespan of temperature sensors in processing plants in cases where a measuring sensor is not otherwise mechanically or chemically useful in...

Cartridge Heater

Cartridge Heater

A cartridge heater is a cylindrical tubular heating device that provides concise and precise heating for various forms of materials, machinery, and equipment. Unlike an immersion heater, a cartridge heater is inserted into a hole in the item to be heated to furnish internal radiant heat...

Heating Element

Heating Element

A heating element is a material or device that directly converts electrical energy into heat or thermal energy through a principle known as Joule heating. Joule heating is the phenomenon where a conductor generates...

Electric Heaters

Electric Heaters

Electric heating is produced by using a known resistance in an electric circuit. This placed resistance has very few free electrons in it so it does not conduct electric current easily through it. When there is resistance in...

Infrared Heating

Infrared Heating

Infrared heating is a heating method used to warm surrounding bodies by infrared radiation. Thermal energy is transferred directly to a body with a lower temperature through electromagnetic waves in the infrared region...

Test and Measurement Equipment
Featured Industries